skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "SHAPIROVSKY, ILYA B"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract On relational structures and on polymodal logics, we describe operations which preserve local tabularity. This provides new sufficient semantic and axiomatic conditions for local tabularity of a modal logic. The main results are the following. We show that local tabularity does not depend on reflexivity. Namely, given a class$$\mathcal {F}$$of frames, consider the class$$\mathcal {F}^{\mathrm {r}}$$of frames, where the reflexive closure operation was applied to each relation in every frame in$$\mathcal {F}$$. We show that if the logic of$$\mathcal {F}^{\mathrm {r}}$$is locally tabular, then the logic of$$\mathcal {F}$$is locally tabular as well. Then we consider the operation of sum on Kripke frames, where a family of frames-summands is indexed by elements of another frame. We show that if both the logic of indices and the logic of summands are locally tabular, then the logic of corresponding sums is also locally tabular. Finally, using the previous theorem, we describe an operation on logics that preserves local tabularity: we provide a set of formulas such that the extension of the fusion of two canonical locally tabular logics with these formulas is locally tabular. 
    more » « less
    Free, publicly-accessible full text available January 27, 2026